beginner/파이썬 기초

NumPy_잘라내기

johh 2019. 2. 11. 13:22
Untitled1
In [1]:
import numpy as np

Iris 데이터 불러오기

In [2]:
f = open('iris.csv')

'''작업내용'''

f.close()
In [3]:
data = []

f = open('iris.csv')

f.readline() # 첫 줄은 분류 목록이므로 

for line in f:
    I = line.strip().split(',')
    I[0] = float(I[0])
    I[1] = float(I[1])
    I[2] = float(I[2])
    I[3] = float(I[3])
    data.append(I)
    
    if I[4] == 'Iris-setosa':
        I[4] = 0
    elif I[4] == 'Iris-versicolor':
        I[4] = 1
    else:
        I[4] = 2
        
        
f.close()


iris = np.array(data)
print(iris)
[[5.1 3.5 1.4 0.2 0. ]
 [4.9 3.  1.4 0.2 0. ]
 [4.7 3.2 1.3 0.2 0. ]
 [4.6 3.1 1.5 0.2 0. ]
 [5.  3.6 1.4 0.2 0. ]
 [5.4 3.9 1.7 0.4 0. ]
 [4.6 3.4 1.4 0.3 0. ]
 [5.  3.4 1.5 0.2 0. ]
 [4.4 2.9 1.4 0.2 0. ]
 [4.9 3.1 1.5 0.1 0. ]
 [5.4 3.7 1.5 0.2 0. ]
 [4.8 3.4 1.6 0.2 0. ]
 [4.8 3.  1.4 0.1 0. ]
 [4.3 3.  1.1 0.1 0. ]
 [5.8 4.  1.2 0.2 0. ]
 [5.7 4.4 1.5 0.4 0. ]
 [5.4 3.9 1.3 0.4 0. ]
 [5.1 3.5 1.4 0.3 0. ]
 [5.7 3.8 1.7 0.3 0. ]
 [5.1 3.8 1.5 0.3 0. ]
 [5.4 3.4 1.7 0.2 0. ]
 [5.1 3.7 1.5 0.4 0. ]
 [4.6 3.6 1.  0.2 0. ]
 [5.1 3.3 1.7 0.5 0. ]
 [4.8 3.4 1.9 0.2 0. ]
 [5.  3.  1.6 0.2 0. ]
 [5.  3.4 1.6 0.4 0. ]
 [5.2 3.5 1.5 0.2 0. ]
 [5.2 3.4 1.4 0.2 0. ]
 [4.7 3.2 1.6 0.2 0. ]
 [4.8 3.1 1.6 0.2 0. ]
 [5.4 3.4 1.5 0.4 0. ]
 [5.2 4.1 1.5 0.1 0. ]
 [5.5 4.2 1.4 0.2 0. ]
 [4.9 3.1 1.5 0.1 0. ]
 [5.  3.2 1.2 0.2 0. ]
 [5.5 3.5 1.3 0.2 0. ]
 [4.9 3.1 1.5 0.1 0. ]
 [4.4 3.  1.3 0.2 0. ]
 [5.1 3.4 1.5 0.2 0. ]
 [5.  3.5 1.3 0.3 0. ]
 [4.5 2.3 1.3 0.3 0. ]
 [4.4 3.2 1.3 0.2 0. ]
 [5.  3.5 1.6 0.6 0. ]
 [5.1 3.8 1.9 0.4 0. ]
 [4.8 3.  1.4 0.3 0. ]
 [5.1 3.8 1.6 0.2 0. ]
 [4.6 3.2 1.4 0.2 0. ]
 [5.3 3.7 1.5 0.2 0. ]
 [5.  3.3 1.4 0.2 0. ]
 [7.  3.2 4.7 1.4 1. ]
 [6.4 3.2 4.5 1.5 1. ]
 [6.9 3.1 4.9 1.5 1. ]
 [5.5 2.3 4.  1.3 1. ]
 [6.5 2.8 4.6 1.5 1. ]
 [5.7 2.8 4.5 1.3 1. ]
 [6.3 3.3 4.7 1.6 1. ]
 [4.9 2.4 3.3 1.  1. ]
 [6.6 2.9 4.6 1.3 1. ]
 [5.2 2.7 3.9 1.4 1. ]
 [5.  2.  3.5 1.  1. ]
 [5.9 3.  4.2 1.5 1. ]
 [6.  2.2 4.  1.  1. ]
 [6.1 2.9 4.7 1.4 1. ]
 [5.6 2.9 3.6 1.3 1. ]
 [6.7 3.1 4.4 1.4 1. ]
 [5.6 3.  4.5 1.5 1. ]
 [5.8 2.7 4.1 1.  1. ]
 [6.2 2.2 4.5 1.5 1. ]
 [5.6 2.5 3.9 1.1 1. ]
 [5.9 3.2 4.8 1.8 1. ]
 [6.1 2.8 4.  1.3 1. ]
 [6.3 2.5 4.9 1.5 1. ]
 [6.1 2.8 4.7 1.2 1. ]
 [6.4 2.9 4.3 1.3 1. ]
 [6.6 3.  4.4 1.4 1. ]
 [6.8 2.8 4.8 1.4 1. ]
 [6.7 3.  5.  1.7 1. ]
 [6.  2.9 4.5 1.5 1. ]
 [5.7 2.6 3.5 1.  1. ]
 [5.5 2.4 3.8 1.1 1. ]
 [5.5 2.4 3.7 1.  1. ]
 [5.8 2.7 3.9 1.2 1. ]
 [6.  2.7 5.1 1.6 1. ]
 [5.4 3.  4.5 1.5 1. ]
 [6.  3.4 4.5 1.6 1. ]
 [6.7 3.1 4.7 1.5 1. ]
 [6.3 2.3 4.4 1.3 1. ]
 [5.6 3.  4.1 1.3 1. ]
 [5.5 2.5 4.  1.3 1. ]
 [5.5 2.6 4.4 1.2 1. ]
 [6.1 3.  4.6 1.4 1. ]
 [5.8 2.6 4.  1.2 1. ]
 [5.  2.3 3.3 1.  1. ]
 [5.6 2.7 4.2 1.3 1. ]
 [5.7 3.  4.2 1.2 1. ]
 [5.7 2.9 4.2 1.3 1. ]
 [6.2 2.9 4.3 1.3 1. ]
 [5.1 2.5 3.  1.1 1. ]
 [5.7 2.8 4.1 1.3 1. ]
 [6.3 3.3 6.  2.5 2. ]
 [5.8 2.7 5.1 1.9 2. ]
 [7.1 3.  5.9 2.1 2. ]
 [6.3 2.9 5.6 1.8 2. ]
 [6.5 3.  5.8 2.2 2. ]
 [7.6 3.  6.6 2.1 2. ]
 [4.9 2.5 4.5 1.7 2. ]
 [7.3 2.9 6.3 1.8 2. ]
 [6.7 2.5 5.8 1.8 2. ]
 [7.2 3.6 6.1 2.5 2. ]
 [6.5 3.2 5.1 2.  2. ]
 [6.4 2.7 5.3 1.9 2. ]
 [6.8 3.  5.5 2.1 2. ]
 [5.7 2.5 5.  2.  2. ]
 [5.8 2.8 5.1 2.4 2. ]
 [6.4 3.2 5.3 2.3 2. ]
 [6.5 3.  5.5 1.8 2. ]
 [7.7 3.8 6.7 2.2 2. ]
 [7.7 2.6 6.9 2.3 2. ]
 [6.  2.2 5.  1.5 2. ]
 [6.9 3.2 5.7 2.3 2. ]
 [5.6 2.8 4.9 2.  2. ]
 [7.7 2.8 6.7 2.  2. ]
 [6.3 2.7 4.9 1.8 2. ]
 [6.7 3.3 5.7 2.1 2. ]
 [7.2 3.2 6.  1.8 2. ]
 [6.2 2.8 4.8 1.8 2. ]
 [6.1 3.  4.9 1.8 2. ]
 [6.4 2.8 5.6 2.1 2. ]
 [7.2 3.  5.8 1.6 2. ]
 [7.4 2.8 6.1 1.9 2. ]
 [7.9 3.8 6.4 2.  2. ]
 [6.4 2.8 5.6 2.2 2. ]
 [6.3 2.8 5.1 1.5 2. ]
 [6.1 2.6 5.6 1.4 2. ]
 [7.7 3.  6.1 2.3 2. ]
 [6.3 3.4 5.6 2.4 2. ]
 [6.4 3.1 5.5 1.8 2. ]
 [6.  3.  4.8 1.8 2. ]
 [6.9 3.1 5.4 2.1 2. ]
 [6.7 3.1 5.6 2.4 2. ]
 [6.9 3.1 5.1 2.3 2. ]
 [5.8 2.7 5.1 1.9 2. ]
 [6.8 3.2 5.9 2.3 2. ]
 [6.7 3.3 5.7 2.5 2. ]
 [6.7 3.  5.2 2.3 2. ]
 [6.3 2.5 5.  1.9 2. ]
 [6.5 3.  5.2 2.  2. ]
 [6.2 3.4 5.4 2.3 2. ]
 [5.9 3.  5.1 1.8 2. ]]
In [4]:
iris.shape
Out[4]:
(150, 5)
In [5]:
iris[0]
Out[5]:
array([5.1, 3.5, 1.4, 0.2, 0. ])
In [6]:
iris[:,4]
Out[6]:
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.])
In [7]:
f = open('iris.csv')

line = f.readline()
features = line.strip().split(',')[:4]

labels = ['Iris-setosa', 'Iris-versicolor', 'Iris-virginica']

data = []
for line in f:
    I = line.strip().split(',')
    I[:4] = [float(i) for i in I[:4]]
    I[4] = labels.index(I[4])
    data.append(I)
    
f.close()

iris = np.array(data)

display : print와 유사한데 아래로 쭉 써준다

In [8]:
display(type(iris), iris.shape, len(iris), iris[0])
numpy.ndarray
(150, 5)
150
array([5.1, 3.5, 1.4, 0.2, 0. ])

데이터를 가공해서 더 잘 다루기 위해 list를 NumPy로 바꾼다.

행(샘플, 레코드)읽기

In [9]:
iris[0]
Out[9]:
array([5.1, 3.5, 1.4, 0.2, 0. ])
In [10]:
iris[1]
Out[10]:
array([4.9, 3. , 1.4, 0.2, 0. ])
In [11]:
iris[149]
Out[11]:
array([5.9, 3. , 5.1, 1.8, 2. ])
In [12]:
iris[-1]
Out[12]:
array([5.9, 3. , 5.1, 1.8, 2. ])
In [13]:
iris[150]  # 0부터 시작하니 마지막 줄은 149이다.
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-13-ba6032c5562e> in <module>()
----> 1 iris[150]  # 0부터 시작하니 마지막 줄은 149이다.

IndexError: index 150 is out of bounds for axis 0 with size 150
In [ ]:
iris[0:5]
In [14]:
iris[50:55]
Out[14]:
array([[7. , 3.2, 4.7, 1.4, 1. ],
       [6.4, 3.2, 4.5, 1.5, 1. ],
       [6.9, 3.1, 4.9, 1.5, 1. ],
       [5.5, 2.3, 4. , 1.3, 1. ],
       [6.5, 2.8, 4.6, 1.5, 1. ]])

한 항목 읽기

In [15]:
iris[0,0]
Out[15]:
5.1
In [16]:
iris[50,3]
Out[16]:
1.4
In [17]:
iris[0,4], iris[0,-1], iris[-1,0], iris[-1,-1]
Out[17]:
(0.0, 0.0, 5.9, 2.0)

열(칼럼,속성)읽기

In [18]:
iris[:,0]
Out[18]:
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
       4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
       5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
       5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4,
       6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6,
       6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7,
       6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5,
       6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3,
       6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5,
       7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2,
       7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8,
       6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])
In [19]:
iris[:,-1]
Out[19]:
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.])
In [20]:
X = iris[:,:4]
X
Out[20]:
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])
In [21]:
X.shape
Out[21]:
(150, 4)
In [22]:
y = iris[:,4]
y
Out[22]:
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.])
In [23]:
y.shape
Out[23]:
(150,)

데이타와 레이블(target)을 분리

In [24]:
# iris[행번호, 열번호]

그래프 그려보기

In [25]:
import matplotlib.pyplot as plt
In [26]:
plt.plot(iris[:,0])
Out[26]:
[<matplotlib.lines.Line2D at 0xece15bbba8>]
In [27]:
plt.plot(iris[:,-1])
Out[27]:
[<matplotlib.lines.Line2D at 0xece165d198>]
In [28]:
plt.plot(iris[:,1])
Out[28]:
[<matplotlib.lines.Line2D at 0xece130b550>]
In [29]:
plt.plot(iris[:,0])
plt.plot(iris[:,1])
plt.plot(iris[:,2])
plt.plot(iris[:,3])

plt.title('Iris features', fontsize = 15)
plt.legend(['SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'])
Out[29]:
<matplotlib.legend.Legend at 0xece163b0f0>
In [30]:
plt.scatter(iris[:,0], iris[:,1], c=iris[:,-1]) #c는 컬러
plt.colorbar()

plt.xlabel('SepalLength')
plt.ylabel('SepalWidth') #속성 4개를 가지고 6종류의 산점도를 그릴수 있다.
Out[30]:
Text(0,0.5,'SepalWidth')
In [31]:
plt.plot(iris[:50,:4].T, 'r-', alpha=0.1)
plt.plot(iris[50:100,:4].T, 'g-',alpha=0.1)
plt.plot(iris[100:,:4].T, 'b-', alpha=0.1)

plt.xticks(range(4),['SepalLength','SepalWidth', 'PetalLength', 'PetalWidth'])
pass
In [32]:
iris[:,0]
Out[32]:
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
       4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
       5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
       5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4,
       6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6,
       6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7,
       6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5,
       6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3,
       6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5,
       7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2,
       7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8,
       6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])
In [33]:
iris[:,0]
Out[33]:
array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8,
       4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. ,
       5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4,
       5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4,
       6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6,
       6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7,
       6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5,
       6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3,
       6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5,
       7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2,
       7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8,
       6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])
In [34]:
data
Out[34]:
[[5.1, 3.5, 1.4, 0.2, 0],
 [4.9, 3.0, 1.4, 0.2, 0],
 [4.7, 3.2, 1.3, 0.2, 0],
 [4.6, 3.1, 1.5, 0.2, 0],
 [5.0, 3.6, 1.4, 0.2, 0],
 [5.4, 3.9, 1.7, 0.4, 0],
 [4.6, 3.4, 1.4, 0.3, 0],
 [5.0, 3.4, 1.5, 0.2, 0],
 [4.4, 2.9, 1.4, 0.2, 0],
 [4.9, 3.1, 1.5, 0.1, 0],
 [5.4, 3.7, 1.5, 0.2, 0],
 [4.8, 3.4, 1.6, 0.2, 0],
 [4.8, 3.0, 1.4, 0.1, 0],
 [4.3, 3.0, 1.1, 0.1, 0],
 [5.8, 4.0, 1.2, 0.2, 0],
 [5.7, 4.4, 1.5, 0.4, 0],
 [5.4, 3.9, 1.3, 0.4, 0],
 [5.1, 3.5, 1.4, 0.3, 0],
 [5.7, 3.8, 1.7, 0.3, 0],
 [5.1, 3.8, 1.5, 0.3, 0],
 [5.4, 3.4, 1.7, 0.2, 0],
 [5.1, 3.7, 1.5, 0.4, 0],
 [4.6, 3.6, 1.0, 0.2, 0],
 [5.1, 3.3, 1.7, 0.5, 0],
 [4.8, 3.4, 1.9, 0.2, 0],
 [5.0, 3.0, 1.6, 0.2, 0],
 [5.0, 3.4, 1.6, 0.4, 0],
 [5.2, 3.5, 1.5, 0.2, 0],
 [5.2, 3.4, 1.4, 0.2, 0],
 [4.7, 3.2, 1.6, 0.2, 0],
 [4.8, 3.1, 1.6, 0.2, 0],
 [5.4, 3.4, 1.5, 0.4, 0],
 [5.2, 4.1, 1.5, 0.1, 0],
 [5.5, 4.2, 1.4, 0.2, 0],
 [4.9, 3.1, 1.5, 0.1, 0],
 [5.0, 3.2, 1.2, 0.2, 0],
 [5.5, 3.5, 1.3, 0.2, 0],
 [4.9, 3.1, 1.5, 0.1, 0],
 [4.4, 3.0, 1.3, 0.2, 0],
 [5.1, 3.4, 1.5, 0.2, 0],
 [5.0, 3.5, 1.3, 0.3, 0],
 [4.5, 2.3, 1.3, 0.3, 0],
 [4.4, 3.2, 1.3, 0.2, 0],
 [5.0, 3.5, 1.6, 0.6, 0],
 [5.1, 3.8, 1.9, 0.4, 0],
 [4.8, 3.0, 1.4, 0.3, 0],
 [5.1, 3.8, 1.6, 0.2, 0],
 [4.6, 3.2, 1.4, 0.2, 0],
 [5.3, 3.7, 1.5, 0.2, 0],
 [5.0, 3.3, 1.4, 0.2, 0],
 [7.0, 3.2, 4.7, 1.4, 1],
 [6.4, 3.2, 4.5, 1.5, 1],
 [6.9, 3.1, 4.9, 1.5, 1],
 [5.5, 2.3, 4.0, 1.3, 1],
 [6.5, 2.8, 4.6, 1.5, 1],
 [5.7, 2.8, 4.5, 1.3, 1],
 [6.3, 3.3, 4.7, 1.6, 1],
 [4.9, 2.4, 3.3, 1.0, 1],
 [6.6, 2.9, 4.6, 1.3, 1],
 [5.2, 2.7, 3.9, 1.4, 1],
 [5.0, 2.0, 3.5, 1.0, 1],
 [5.9, 3.0, 4.2, 1.5, 1],
 [6.0, 2.2, 4.0, 1.0, 1],
 [6.1, 2.9, 4.7, 1.4, 1],
 [5.6, 2.9, 3.6, 1.3, 1],
 [6.7, 3.1, 4.4, 1.4, 1],
 [5.6, 3.0, 4.5, 1.5, 1],
 [5.8, 2.7, 4.1, 1.0, 1],
 [6.2, 2.2, 4.5, 1.5, 1],
 [5.6, 2.5, 3.9, 1.1, 1],
 [5.9, 3.2, 4.8, 1.8, 1],
 [6.1, 2.8, 4.0, 1.3, 1],
 [6.3, 2.5, 4.9, 1.5, 1],
 [6.1, 2.8, 4.7, 1.2, 1],
 [6.4, 2.9, 4.3, 1.3, 1],
 [6.6, 3.0, 4.4, 1.4, 1],
 [6.8, 2.8, 4.8, 1.4, 1],
 [6.7, 3.0, 5.0, 1.7, 1],
 [6.0, 2.9, 4.5, 1.5, 1],
 [5.7, 2.6, 3.5, 1.0, 1],
 [5.5, 2.4, 3.8, 1.1, 1],
 [5.5, 2.4, 3.7, 1.0, 1],
 [5.8, 2.7, 3.9, 1.2, 1],
 [6.0, 2.7, 5.1, 1.6, 1],
 [5.4, 3.0, 4.5, 1.5, 1],
 [6.0, 3.4, 4.5, 1.6, 1],
 [6.7, 3.1, 4.7, 1.5, 1],
 [6.3, 2.3, 4.4, 1.3, 1],
 [5.6, 3.0, 4.1, 1.3, 1],
 [5.5, 2.5, 4.0, 1.3, 1],
 [5.5, 2.6, 4.4, 1.2, 1],
 [6.1, 3.0, 4.6, 1.4, 1],
 [5.8, 2.6, 4.0, 1.2, 1],
 [5.0, 2.3, 3.3, 1.0, 1],
 [5.6, 2.7, 4.2, 1.3, 1],
 [5.7, 3.0, 4.2, 1.2, 1],
 [5.7, 2.9, 4.2, 1.3, 1],
 [6.2, 2.9, 4.3, 1.3, 1],
 [5.1, 2.5, 3.0, 1.1, 1],
 [5.7, 2.8, 4.1, 1.3, 1],
 [6.3, 3.3, 6.0, 2.5, 2],
 [5.8, 2.7, 5.1, 1.9, 2],
 [7.1, 3.0, 5.9, 2.1, 2],
 [6.3, 2.9, 5.6, 1.8, 2],
 [6.5, 3.0, 5.8, 2.2, 2],
 [7.6, 3.0, 6.6, 2.1, 2],
 [4.9, 2.5, 4.5, 1.7, 2],
 [7.3, 2.9, 6.3, 1.8, 2],
 [6.7, 2.5, 5.8, 1.8, 2],
 [7.2, 3.6, 6.1, 2.5, 2],
 [6.5, 3.2, 5.1, 2.0, 2],
 [6.4, 2.7, 5.3, 1.9, 2],
 [6.8, 3.0, 5.5, 2.1, 2],
 [5.7, 2.5, 5.0, 2.0, 2],
 [5.8, 2.8, 5.1, 2.4, 2],
 [6.4, 3.2, 5.3, 2.3, 2],
 [6.5, 3.0, 5.5, 1.8, 2],
 [7.7, 3.8, 6.7, 2.2, 2],
 [7.7, 2.6, 6.9, 2.3, 2],
 [6.0, 2.2, 5.0, 1.5, 2],
 [6.9, 3.2, 5.7, 2.3, 2],
 [5.6, 2.8, 4.9, 2.0, 2],
 [7.7, 2.8, 6.7, 2.0, 2],
 [6.3, 2.7, 4.9, 1.8, 2],
 [6.7, 3.3, 5.7, 2.1, 2],
 [7.2, 3.2, 6.0, 1.8, 2],
 [6.2, 2.8, 4.8, 1.8, 2],
 [6.1, 3.0, 4.9, 1.8, 2],
 [6.4, 2.8, 5.6, 2.1, 2],
 [7.2, 3.0, 5.8, 1.6, 2],
 [7.4, 2.8, 6.1, 1.9, 2],
 [7.9, 3.8, 6.4, 2.0, 2],
 [6.4, 2.8, 5.6, 2.2, 2],
 [6.3, 2.8, 5.1, 1.5, 2],
 [6.1, 2.6, 5.6, 1.4, 2],
 [7.7, 3.0, 6.1, 2.3, 2],
 [6.3, 3.4, 5.6, 2.4, 2],
 [6.4, 3.1, 5.5, 1.8, 2],
 [6.0, 3.0, 4.8, 1.8, 2],
 [6.9, 3.1, 5.4, 2.1, 2],
 [6.7, 3.1, 5.6, 2.4, 2],
 [6.9, 3.1, 5.1, 2.3, 2],
 [5.8, 2.7, 5.1, 1.9, 2],
 [6.8, 3.2, 5.9, 2.3, 2],
 [6.7, 3.3, 5.7, 2.5, 2],
 [6.7, 3.0, 5.2, 2.3, 2],
 [6.3, 2.5, 5.0, 1.9, 2],
 [6.5, 3.0, 5.2, 2.0, 2],
 [6.2, 3.4, 5.4, 2.3, 2],
 [5.9, 3.0, 5.1, 1.8, 2]]
In [35]:
slen2=[]

for a in data:
    slen2.append(a[0])

slen2
Out[35]:
[5.1,
 4.9,
 4.7,
 4.6,
 5.0,
 5.4,
 4.6,
 5.0,
 4.4,
 4.9,
 5.4,
 4.8,
 4.8,
 4.3,
 5.8,
 5.7,
 5.4,
 5.1,
 5.7,
 5.1,
 5.4,
 5.1,
 4.6,
 5.1,
 4.8,
 5.0,
 5.0,
 5.2,
 5.2,
 4.7,
 4.8,
 5.4,
 5.2,
 5.5,
 4.9,
 5.0,
 5.5,
 4.9,
 4.4,
 5.1,
 5.0,
 4.5,
 4.4,
 5.0,
 5.1,
 4.8,
 5.1,
 4.6,
 5.3,
 5.0,
 7.0,
 6.4,
 6.9,
 5.5,
 6.5,
 5.7,
 6.3,
 4.9,
 6.6,
 5.2,
 5.0,
 5.9,
 6.0,
 6.1,
 5.6,
 6.7,
 5.6,
 5.8,
 6.2,
 5.6,
 5.9,
 6.1,
 6.3,
 6.1,
 6.4,
 6.6,
 6.8,
 6.7,
 6.0,
 5.7,
 5.5,
 5.5,
 5.8,
 6.0,
 5.4,
 6.0,
 6.7,
 6.3,
 5.6,
 5.5,
 5.5,
 6.1,
 5.8,
 5.0,
 5.6,
 5.7,
 5.7,
 6.2,
 5.1,
 5.7,
 6.3,
 5.8,
 7.1,
 6.3,
 6.5,
 7.6,
 4.9,
 7.3,
 6.7,
 7.2,
 6.5,
 6.4,
 6.8,
 5.7,
 5.8,
 6.4,
 6.5,
 7.7,
 7.7,
 6.0,
 6.9,
 5.6,
 7.7,
 6.3,
 6.7,
 7.2,
 6.2,
 6.1,
 6.4,
 7.2,
 7.4,
 7.9,
 6.4,
 6.3,
 6.1,
 7.7,
 6.3,
 6.4,
 6.0,
 6.9,
 6.7,
 6.9,
 5.8,
 6.8,
 6.7,
 6.7,
 6.3,
 6.5,
 6.2,
 5.9]
In [36]:
type(data)
Out[36]:
list
In [37]:
slen1=[]
for i in data:
    slen1.append(i[:4])
slen1
Out[37]:
[[5.1, 3.5, 1.4, 0.2],
 [4.9, 3.0, 1.4, 0.2],
 [4.7, 3.2, 1.3, 0.2],
 [4.6, 3.1, 1.5, 0.2],
 [5.0, 3.6, 1.4, 0.2],
 [5.4, 3.9, 1.7, 0.4],
 [4.6, 3.4, 1.4, 0.3],
 [5.0, 3.4, 1.5, 0.2],
 [4.4, 2.9, 1.4, 0.2],
 [4.9, 3.1, 1.5, 0.1],
 [5.4, 3.7, 1.5, 0.2],
 [4.8, 3.4, 1.6, 0.2],
 [4.8, 3.0, 1.4, 0.1],
 [4.3, 3.0, 1.1, 0.1],
 [5.8, 4.0, 1.2, 0.2],
 [5.7, 4.4, 1.5, 0.4],
 [5.4, 3.9, 1.3, 0.4],
 [5.1, 3.5, 1.4, 0.3],
 [5.7, 3.8, 1.7, 0.3],
 [5.1, 3.8, 1.5, 0.3],
 [5.4, 3.4, 1.7, 0.2],
 [5.1, 3.7, 1.5, 0.4],
 [4.6, 3.6, 1.0, 0.2],
 [5.1, 3.3, 1.7, 0.5],
 [4.8, 3.4, 1.9, 0.2],
 [5.0, 3.0, 1.6, 0.2],
 [5.0, 3.4, 1.6, 0.4],
 [5.2, 3.5, 1.5, 0.2],
 [5.2, 3.4, 1.4, 0.2],
 [4.7, 3.2, 1.6, 0.2],
 [4.8, 3.1, 1.6, 0.2],
 [5.4, 3.4, 1.5, 0.4],
 [5.2, 4.1, 1.5, 0.1],
 [5.5, 4.2, 1.4, 0.2],
 [4.9, 3.1, 1.5, 0.1],
 [5.0, 3.2, 1.2, 0.2],
 [5.5, 3.5, 1.3, 0.2],
 [4.9, 3.1, 1.5, 0.1],
 [4.4, 3.0, 1.3, 0.2],
 [5.1, 3.4, 1.5, 0.2],
 [5.0, 3.5, 1.3, 0.3],
 [4.5, 2.3, 1.3, 0.3],
 [4.4, 3.2, 1.3, 0.2],
 [5.0, 3.5, 1.6, 0.6],
 [5.1, 3.8, 1.9, 0.4],
 [4.8, 3.0, 1.4, 0.3],
 [5.1, 3.8, 1.6, 0.2],
 [4.6, 3.2, 1.4, 0.2],
 [5.3, 3.7, 1.5, 0.2],
 [5.0, 3.3, 1.4, 0.2],
 [7.0, 3.2, 4.7, 1.4],
 [6.4, 3.2, 4.5, 1.5],
 [6.9, 3.1, 4.9, 1.5],
 [5.5, 2.3, 4.0, 1.3],
 [6.5, 2.8, 4.6, 1.5],
 [5.7, 2.8, 4.5, 1.3],
 [6.3, 3.3, 4.7, 1.6],
 [4.9, 2.4, 3.3, 1.0],
 [6.6, 2.9, 4.6, 1.3],
 [5.2, 2.7, 3.9, 1.4],
 [5.0, 2.0, 3.5, 1.0],
 [5.9, 3.0, 4.2, 1.5],
 [6.0, 2.2, 4.0, 1.0],
 [6.1, 2.9, 4.7, 1.4],
 [5.6, 2.9, 3.6, 1.3],
 [6.7, 3.1, 4.4, 1.4],
 [5.6, 3.0, 4.5, 1.5],
 [5.8, 2.7, 4.1, 1.0],
 [6.2, 2.2, 4.5, 1.5],
 [5.6, 2.5, 3.9, 1.1],
 [5.9, 3.2, 4.8, 1.8],
 [6.1, 2.8, 4.0, 1.3],
 [6.3, 2.5, 4.9, 1.5],
 [6.1, 2.8, 4.7, 1.2],
 [6.4, 2.9, 4.3, 1.3],
 [6.6, 3.0, 4.4, 1.4],
 [6.8, 2.8, 4.8, 1.4],
 [6.7, 3.0, 5.0, 1.7],
 [6.0, 2.9, 4.5, 1.5],
 [5.7, 2.6, 3.5, 1.0],
 [5.5, 2.4, 3.8, 1.1],
 [5.5, 2.4, 3.7, 1.0],
 [5.8, 2.7, 3.9, 1.2],
 [6.0, 2.7, 5.1, 1.6],
 [5.4, 3.0, 4.5, 1.5],
 [6.0, 3.4, 4.5, 1.6],
 [6.7, 3.1, 4.7, 1.5],
 [6.3, 2.3, 4.4, 1.3],
 [5.6, 3.0, 4.1, 1.3],
 [5.5, 2.5, 4.0, 1.3],
 [5.5, 2.6, 4.4, 1.2],
 [6.1, 3.0, 4.6, 1.4],
 [5.8, 2.6, 4.0, 1.2],
 [5.0, 2.3, 3.3, 1.0],
 [5.6, 2.7, 4.2, 1.3],
 [5.7, 3.0, 4.2, 1.2],
 [5.7, 2.9, 4.2, 1.3],
 [6.2, 2.9, 4.3, 1.3],
 [5.1, 2.5, 3.0, 1.1],
 [5.7, 2.8, 4.1, 1.3],
 [6.3, 3.3, 6.0, 2.5],
 [5.8, 2.7, 5.1, 1.9],
 [7.1, 3.0, 5.9, 2.1],
 [6.3, 2.9, 5.6, 1.8],
 [6.5, 3.0, 5.8, 2.2],
 [7.6, 3.0, 6.6, 2.1],
 [4.9, 2.5, 4.5, 1.7],
 [7.3, 2.9, 6.3, 1.8],
 [6.7, 2.5, 5.8, 1.8],
 [7.2, 3.6, 6.1, 2.5],
 [6.5, 3.2, 5.1, 2.0],
 [6.4, 2.7, 5.3, 1.9],
 [6.8, 3.0, 5.5, 2.1],
 [5.7, 2.5, 5.0, 2.0],
 [5.8, 2.8, 5.1, 2.4],
 [6.4, 3.2, 5.3, 2.3],
 [6.5, 3.0, 5.5, 1.8],
 [7.7, 3.8, 6.7, 2.2],
 [7.7, 2.6, 6.9, 2.3],
 [6.0, 2.2, 5.0, 1.5],
 [6.9, 3.2, 5.7, 2.3],
 [5.6, 2.8, 4.9, 2.0],
 [7.7, 2.8, 6.7, 2.0],
 [6.3, 2.7, 4.9, 1.8],
 [6.7, 3.3, 5.7, 2.1],
 [7.2, 3.2, 6.0, 1.8],
 [6.2, 2.8, 4.8, 1.8],
 [6.1, 3.0, 4.9, 1.8],
 [6.4, 2.8, 5.6, 2.1],
 [7.2, 3.0, 5.8, 1.6],
 [7.4, 2.8, 6.1, 1.9],
 [7.9, 3.8, 6.4, 2.0],
 [6.4, 2.8, 5.6, 2.2],
 [6.3, 2.8, 5.1, 1.5],
 [6.1, 2.6, 5.6, 1.4],
 [7.7, 3.0, 6.1, 2.3],
 [6.3, 3.4, 5.6, 2.4],
 [6.4, 3.1, 5.5, 1.8],
 [6.0, 3.0, 4.8, 1.8],
 [6.9, 3.1, 5.4, 2.1],
 [6.7, 3.1, 5.6, 2.4],
 [6.9, 3.1, 5.1, 2.3],
 [5.8, 2.7, 5.1, 1.9],
 [6.8, 3.2, 5.9, 2.3],
 [6.7, 3.3, 5.7, 2.5],
 [6.7, 3.0, 5.2, 2.3],
 [6.3, 2.5, 5.0, 1.9],
 [6.5, 3.0, 5.2, 2.0],
 [6.2, 3.4, 5.4, 2.3],
 [5.9, 3.0, 5.1, 1.8]]
In [38]:
X = iris[:,:4]
y = iris[:,4]
In [39]:
X
Out[39]:
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2],
       [7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3],
       [6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])
In [40]:
y
Out[40]:
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
       1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
       2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.])

원하는 속성 뽑아내기

In [41]:
iris[:5]
Out[41]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [4.9, 3. , 1.4, 0.2, 0. ],
       [4.7, 3.2, 1.3, 0.2, 0. ],
       [4.6, 3.1, 1.5, 0.2, 0. ],
       [5. , 3.6, 1.4, 0.2, 0. ]])
In [42]:
iris[[0,2,4]]
Out[42]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [4.7, 3.2, 1.3, 0.2, 0. ],
       [5. , 3.6, 1.4, 0.2, 0. ]])
In [43]:
iris[[4,3,2,1,0]]
Out[43]:
array([[5. , 3.6, 1.4, 0.2, 0. ],
       [4.6, 3.1, 1.5, 0.2, 0. ],
       [4.7, 3.2, 1.3, 0.2, 0. ],
       [4.9, 3. , 1.4, 0.2, 0. ],
       [5.1, 3.5, 1.4, 0.2, 0. ]])
In [44]:
iris[[0,50,100]]
Out[44]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [7. , 3.2, 4.7, 1.4, 1. ],
       [6.3, 3.3, 6. , 2.5, 2. ]])
In [45]:
iris[:,[0,2,4]]
Out[45]:
array([[5.1, 1.4, 0. ],
       [4.9, 1.4, 0. ],
       [4.7, 1.3, 0. ],
       [4.6, 1.5, 0. ],
       [5. , 1.4, 0. ],
       [5.4, 1.7, 0. ],
       [4.6, 1.4, 0. ],
       [5. , 1.5, 0. ],
       [4.4, 1.4, 0. ],
       [4.9, 1.5, 0. ],
       [5.4, 1.5, 0. ],
       [4.8, 1.6, 0. ],
       [4.8, 1.4, 0. ],
       [4.3, 1.1, 0. ],
       [5.8, 1.2, 0. ],
       [5.7, 1.5, 0. ],
       [5.4, 1.3, 0. ],
       [5.1, 1.4, 0. ],
       [5.7, 1.7, 0. ],
       [5.1, 1.5, 0. ],
       [5.4, 1.7, 0. ],
       [5.1, 1.5, 0. ],
       [4.6, 1. , 0. ],
       [5.1, 1.7, 0. ],
       [4.8, 1.9, 0. ],
       [5. , 1.6, 0. ],
       [5. , 1.6, 0. ],
       [5.2, 1.5, 0. ],
       [5.2, 1.4, 0. ],
       [4.7, 1.6, 0. ],
       [4.8, 1.6, 0. ],
       [5.4, 1.5, 0. ],
       [5.2, 1.5, 0. ],
       [5.5, 1.4, 0. ],
       [4.9, 1.5, 0. ],
       [5. , 1.2, 0. ],
       [5.5, 1.3, 0. ],
       [4.9, 1.5, 0. ],
       [4.4, 1.3, 0. ],
       [5.1, 1.5, 0. ],
       [5. , 1.3, 0. ],
       [4.5, 1.3, 0. ],
       [4.4, 1.3, 0. ],
       [5. , 1.6, 0. ],
       [5.1, 1.9, 0. ],
       [4.8, 1.4, 0. ],
       [5.1, 1.6, 0. ],
       [4.6, 1.4, 0. ],
       [5.3, 1.5, 0. ],
       [5. , 1.4, 0. ],
       [7. , 4.7, 1. ],
       [6.4, 4.5, 1. ],
       [6.9, 4.9, 1. ],
       [5.5, 4. , 1. ],
       [6.5, 4.6, 1. ],
       [5.7, 4.5, 1. ],
       [6.3, 4.7, 1. ],
       [4.9, 3.3, 1. ],
       [6.6, 4.6, 1. ],
       [5.2, 3.9, 1. ],
       [5. , 3.5, 1. ],
       [5.9, 4.2, 1. ],
       [6. , 4. , 1. ],
       [6.1, 4.7, 1. ],
       [5.6, 3.6, 1. ],
       [6.7, 4.4, 1. ],
       [5.6, 4.5, 1. ],
       [5.8, 4.1, 1. ],
       [6.2, 4.5, 1. ],
       [5.6, 3.9, 1. ],
       [5.9, 4.8, 1. ],
       [6.1, 4. , 1. ],
       [6.3, 4.9, 1. ],
       [6.1, 4.7, 1. ],
       [6.4, 4.3, 1. ],
       [6.6, 4.4, 1. ],
       [6.8, 4.8, 1. ],
       [6.7, 5. , 1. ],
       [6. , 4.5, 1. ],
       [5.7, 3.5, 1. ],
       [5.5, 3.8, 1. ],
       [5.5, 3.7, 1. ],
       [5.8, 3.9, 1. ],
       [6. , 5.1, 1. ],
       [5.4, 4.5, 1. ],
       [6. , 4.5, 1. ],
       [6.7, 4.7, 1. ],
       [6.3, 4.4, 1. ],
       [5.6, 4.1, 1. ],
       [5.5, 4. , 1. ],
       [5.5, 4.4, 1. ],
       [6.1, 4.6, 1. ],
       [5.8, 4. , 1. ],
       [5. , 3.3, 1. ],
       [5.6, 4.2, 1. ],
       [5.7, 4.2, 1. ],
       [5.7, 4.2, 1. ],
       [6.2, 4.3, 1. ],
       [5.1, 3. , 1. ],
       [5.7, 4.1, 1. ],
       [6.3, 6. , 2. ],
       [5.8, 5.1, 2. ],
       [7.1, 5.9, 2. ],
       [6.3, 5.6, 2. ],
       [6.5, 5.8, 2. ],
       [7.6, 6.6, 2. ],
       [4.9, 4.5, 2. ],
       [7.3, 6.3, 2. ],
       [6.7, 5.8, 2. ],
       [7.2, 6.1, 2. ],
       [6.5, 5.1, 2. ],
       [6.4, 5.3, 2. ],
       [6.8, 5.5, 2. ],
       [5.7, 5. , 2. ],
       [5.8, 5.1, 2. ],
       [6.4, 5.3, 2. ],
       [6.5, 5.5, 2. ],
       [7.7, 6.7, 2. ],
       [7.7, 6.9, 2. ],
       [6. , 5. , 2. ],
       [6.9, 5.7, 2. ],
       [5.6, 4.9, 2. ],
       [7.7, 6.7, 2. ],
       [6.3, 4.9, 2. ],
       [6.7, 5.7, 2. ],
       [7.2, 6. , 2. ],
       [6.2, 4.8, 2. ],
       [6.1, 4.9, 2. ],
       [6.4, 5.6, 2. ],
       [7.2, 5.8, 2. ],
       [7.4, 6.1, 2. ],
       [7.9, 6.4, 2. ],
       [6.4, 5.6, 2. ],
       [6.3, 5.1, 2. ],
       [6.1, 5.6, 2. ],
       [7.7, 6.1, 2. ],
       [6.3, 5.6, 2. ],
       [6.4, 5.5, 2. ],
       [6. , 4.8, 2. ],
       [6.9, 5.4, 2. ],
       [6.7, 5.6, 2. ],
       [6.9, 5.1, 2. ],
       [5.8, 5.1, 2. ],
       [6.8, 5.9, 2. ],
       [6.7, 5.7, 2. ],
       [6.7, 5.2, 2. ],
       [6.3, 5. , 2. ],
       [6.5, 5.2, 2. ],
       [6.2, 5.4, 2. ],
       [5.9, 5.1, 2. ]])

조건식 적용

In [46]:
iris2 = iris[[0,50,100]]
iris2
Out[46]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [7. , 3.2, 4.7, 1.4, 1. ],
       [6.3, 3.3, 6. , 2.5, 2. ]])
In [47]:
iris2[[True,False,True]]
Out[47]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [6.3, 3.3, 6. , 2.5, 2. ]])
In [48]:
iris2[[0,2]]
Out[48]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [6.3, 3.3, 6. , 2.5, 2. ]])
In [49]:
iris2[:,[0,2]]
Out[49]:
array([[5.1, 1.4],
       [7. , 4.7],
       [6.3, 6. ]])
In [50]:
iris2[:,[True,False,True,False,False]]
Out[50]:
array([[5.1, 1.4],
       [7. , 4.7],
       [6.3, 6. ]])
  • 인덱스 이용
  • 리스트 이용
  • 조건식 이용 : 갯수 일치

versicolor와 virginica 만 골라내 보자

In [54]:
a = np.array([1,2,3,4,5])
a
Out[54]:
array([1, 2, 3, 4, 5])
In [56]:
a>3  # 부등식도 항목 하나하나 적용
Out[56]:
array([False, False, False,  True,  True])
In [57]:
a == 3
Out[57]:
array([False, False,  True, False, False])
In [51]:
iris2
Out[51]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [7. , 3.2, 4.7, 1.4, 1. ],
       [6.3, 3.3, 6. , 2.5, 2. ]])
In [59]:
t = iris2[:,-1]  # t는 target을 의미
t
Out[59]:
array([0., 1., 2.])
In [61]:
t < 1
Out[61]:
array([ True, False, False])
In [63]:
iris2[t<1]  # = iris2[[True, False, False]]
Out[63]:
array([[5.1, 3.5, 1.4, 0.2, 0. ]])
In [64]:
iris2[iris2[:,-1]==0]
Out[64]:
array([[5.1, 3.5, 1.4, 0.2, 0. ]])
In [68]:
setosa = iris[iris[:,-1]==0]
setosa
Out[68]:
array([[5.1, 3.5, 1.4, 0.2, 0. ],
       [4.9, 3. , 1.4, 0.2, 0. ],
       [4.7, 3.2, 1.3, 0.2, 0. ],
       [4.6, 3.1, 1.5, 0.2, 0. ],
       [5. , 3.6, 1.4, 0.2, 0. ],
       [5.4, 3.9, 1.7, 0.4, 0. ],
       [4.6, 3.4, 1.4, 0.3, 0. ],
       [5. , 3.4, 1.5, 0.2, 0. ],
       [4.4, 2.9, 1.4, 0.2, 0. ],
       [4.9, 3.1, 1.5, 0.1, 0. ],
       [5.4, 3.7, 1.5, 0.2, 0. ],
       [4.8, 3.4, 1.6, 0.2, 0. ],
       [4.8, 3. , 1.4, 0.1, 0. ],
       [4.3, 3. , 1.1, 0.1, 0. ],
       [5.8, 4. , 1.2, 0.2, 0. ],
       [5.7, 4.4, 1.5, 0.4, 0. ],
       [5.4, 3.9, 1.3, 0.4, 0. ],
       [5.1, 3.5, 1.4, 0.3, 0. ],
       [5.7, 3.8, 1.7, 0.3, 0. ],
       [5.1, 3.8, 1.5, 0.3, 0. ],
       [5.4, 3.4, 1.7, 0.2, 0. ],
       [5.1, 3.7, 1.5, 0.4, 0. ],
       [4.6, 3.6, 1. , 0.2, 0. ],
       [5.1, 3.3, 1.7, 0.5, 0. ],
       [4.8, 3.4, 1.9, 0.2, 0. ],
       [5. , 3. , 1.6, 0.2, 0. ],
       [5. , 3.4, 1.6, 0.4, 0. ],
       [5.2, 3.5, 1.5, 0.2, 0. ],
       [5.2, 3.4, 1.4, 0.2, 0. ],
       [4.7, 3.2, 1.6, 0.2, 0. ],
       [4.8, 3.1, 1.6, 0.2, 0. ],
       [5.4, 3.4, 1.5, 0.4, 0. ],
       [5.2, 4.1, 1.5, 0.1, 0. ],
       [5.5, 4.2, 1.4, 0.2, 0. ],
       [4.9, 3.1, 1.5, 0.1, 0. ],
       [5. , 3.2, 1.2, 0.2, 0. ],
       [5.5, 3.5, 1.3, 0.2, 0. ],
       [4.9, 3.1, 1.5, 0.1, 0. ],
       [4.4, 3. , 1.3, 0.2, 0. ],
       [5.1, 3.4, 1.5, 0.2, 0. ],
       [5. , 3.5, 1.3, 0.3, 0. ],
       [4.5, 2.3, 1.3, 0.3, 0. ],
       [4.4, 3.2, 1.3, 0.2, 0. ],
       [5. , 3.5, 1.6, 0.6, 0. ],
       [5.1, 3.8, 1.9, 0.4, 0. ],
       [4.8, 3. , 1.4, 0.3, 0. ],
       [5.1, 3.8, 1.6, 0.2, 0. ],
       [4.6, 3.2, 1.4, 0.2, 0. ],
       [5.3, 3.7, 1.5, 0.2, 0. ],
       [5. , 3.3, 1.4, 0.2, 0. ]])
In [67]:
setosa.shape
Out[67]:
(50, 5)
In [70]:
versicolor = iris[iris[:,-1]==1]
versicolor
Out[70]:
array([[7. , 3.2, 4.7, 1.4, 1. ],
       [6.4, 3.2, 4.5, 1.5, 1. ],
       [6.9, 3.1, 4.9, 1.5, 1. ],
       [5.5, 2.3, 4. , 1.3, 1. ],
       [6.5, 2.8, 4.6, 1.5, 1. ],
       [5.7, 2.8, 4.5, 1.3, 1. ],
       [6.3, 3.3, 4.7, 1.6, 1. ],
       [4.9, 2.4, 3.3, 1. , 1. ],
       [6.6, 2.9, 4.6, 1.3, 1. ],
       [5.2, 2.7, 3.9, 1.4, 1. ],
       [5. , 2. , 3.5, 1. , 1. ],
       [5.9, 3. , 4.2, 1.5, 1. ],
       [6. , 2.2, 4. , 1. , 1. ],
       [6.1, 2.9, 4.7, 1.4, 1. ],
       [5.6, 2.9, 3.6, 1.3, 1. ],
       [6.7, 3.1, 4.4, 1.4, 1. ],
       [5.6, 3. , 4.5, 1.5, 1. ],
       [5.8, 2.7, 4.1, 1. , 1. ],
       [6.2, 2.2, 4.5, 1.5, 1. ],
       [5.6, 2.5, 3.9, 1.1, 1. ],
       [5.9, 3.2, 4.8, 1.8, 1. ],
       [6.1, 2.8, 4. , 1.3, 1. ],
       [6.3, 2.5, 4.9, 1.5, 1. ],
       [6.1, 2.8, 4.7, 1.2, 1. ],
       [6.4, 2.9, 4.3, 1.3, 1. ],
       [6.6, 3. , 4.4, 1.4, 1. ],
       [6.8, 2.8, 4.8, 1.4, 1. ],
       [6.7, 3. , 5. , 1.7, 1. ],
       [6. , 2.9, 4.5, 1.5, 1. ],
       [5.7, 2.6, 3.5, 1. , 1. ],
       [5.5, 2.4, 3.8, 1.1, 1. ],
       [5.5, 2.4, 3.7, 1. , 1. ],
       [5.8, 2.7, 3.9, 1.2, 1. ],
       [6. , 2.7, 5.1, 1.6, 1. ],
       [5.4, 3. , 4.5, 1.5, 1. ],
       [6. , 3.4, 4.5, 1.6, 1. ],
       [6.7, 3.1, 4.7, 1.5, 1. ],
       [6.3, 2.3, 4.4, 1.3, 1. ],
       [5.6, 3. , 4.1, 1.3, 1. ],
       [5.5, 2.5, 4. , 1.3, 1. ],
       [5.5, 2.6, 4.4, 1.2, 1. ],
       [6.1, 3. , 4.6, 1.4, 1. ],
       [5.8, 2.6, 4. , 1.2, 1. ],
       [5. , 2.3, 3.3, 1. , 1. ],
       [5.6, 2.7, 4.2, 1.3, 1. ],
       [5.7, 3. , 4.2, 1.2, 1. ],
       [5.7, 2.9, 4.2, 1.3, 1. ],
       [6.2, 2.9, 4.3, 1.3, 1. ],
       [5.1, 2.5, 3. , 1.1, 1. ],
       [5.7, 2.8, 4.1, 1.3, 1. ]])
In [71]:
versicolor.shape
Out[71]:
(50, 5)
In [72]:
virginica = iris[iris[:,-1]==2]
virginica
Out[72]:
array([[6.3, 3.3, 6. , 2.5, 2. ],
       [5.8, 2.7, 5.1, 1.9, 2. ],
       [7.1, 3. , 5.9, 2.1, 2. ],
       [6.3, 2.9, 5.6, 1.8, 2. ],
       [6.5, 3. , 5.8, 2.2, 2. ],
       [7.6, 3. , 6.6, 2.1, 2. ],
       [4.9, 2.5, 4.5, 1.7, 2. ],
       [7.3, 2.9, 6.3, 1.8, 2. ],
       [6.7, 2.5, 5.8, 1.8, 2. ],
       [7.2, 3.6, 6.1, 2.5, 2. ],
       [6.5, 3.2, 5.1, 2. , 2. ],
       [6.4, 2.7, 5.3, 1.9, 2. ],
       [6.8, 3. , 5.5, 2.1, 2. ],
       [5.7, 2.5, 5. , 2. , 2. ],
       [5.8, 2.8, 5.1, 2.4, 2. ],
       [6.4, 3.2, 5.3, 2.3, 2. ],
       [6.5, 3. , 5.5, 1.8, 2. ],
       [7.7, 3.8, 6.7, 2.2, 2. ],
       [7.7, 2.6, 6.9, 2.3, 2. ],
       [6. , 2.2, 5. , 1.5, 2. ],
       [6.9, 3.2, 5.7, 2.3, 2. ],
       [5.6, 2.8, 4.9, 2. , 2. ],
       [7.7, 2.8, 6.7, 2. , 2. ],
       [6.3, 2.7, 4.9, 1.8, 2. ],
       [6.7, 3.3, 5.7, 2.1, 2. ],
       [7.2, 3.2, 6. , 1.8, 2. ],
       [6.2, 2.8, 4.8, 1.8, 2. ],
       [6.1, 3. , 4.9, 1.8, 2. ],
       [6.4, 2.8, 5.6, 2.1, 2. ],
       [7.2, 3. , 5.8, 1.6, 2. ],
       [7.4, 2.8, 6.1, 1.9, 2. ],
       [7.9, 3.8, 6.4, 2. , 2. ],
       [6.4, 2.8, 5.6, 2.2, 2. ],
       [6.3, 2.8, 5.1, 1.5, 2. ],
       [6.1, 2.6, 5.6, 1.4, 2. ],
       [7.7, 3. , 6.1, 2.3, 2. ],
       [6.3, 3.4, 5.6, 2.4, 2. ],
       [6.4, 3.1, 5.5, 1.8, 2. ],
       [6. , 3. , 4.8, 1.8, 2. ],
       [6.9, 3.1, 5.4, 2.1, 2. ],
       [6.7, 3.1, 5.6, 2.4, 2. ],
       [6.9, 3.1, 5.1, 2.3, 2. ],
       [5.8, 2.7, 5.1, 1.9, 2. ],
       [6.8, 3.2, 5.9, 2.3, 2. ],
       [6.7, 3.3, 5.7, 2.5, 2. ],
       [6.7, 3. , 5.2, 2.3, 2. ],
       [6.3, 2.5, 5. , 1.9, 2. ],
       [6.5, 3. , 5.2, 2. , 2. ],
       [6.2, 3.4, 5.4, 2.3, 2. ],
       [5.9, 3. , 5.1, 1.8, 2. ]])
In [73]:
virginica.shape
Out[73]:
(50, 5)
In [77]:
X = iris[:, :4]
y = iris[:, 4]

setosa1 = X[y==0]
versicolor1 = X[y==1]
virginica1 = X[y==2]
In [78]:
setosa1
Out[78]:
array([[5.1, 3.5, 1.4, 0.2],
       [4.9, 3. , 1.4, 0.2],
       [4.7, 3.2, 1.3, 0.2],
       [4.6, 3.1, 1.5, 0.2],
       [5. , 3.6, 1.4, 0.2],
       [5.4, 3.9, 1.7, 0.4],
       [4.6, 3.4, 1.4, 0.3],
       [5. , 3.4, 1.5, 0.2],
       [4.4, 2.9, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5.4, 3.7, 1.5, 0.2],
       [4.8, 3.4, 1.6, 0.2],
       [4.8, 3. , 1.4, 0.1],
       [4.3, 3. , 1.1, 0.1],
       [5.8, 4. , 1.2, 0.2],
       [5.7, 4.4, 1.5, 0.4],
       [5.4, 3.9, 1.3, 0.4],
       [5.1, 3.5, 1.4, 0.3],
       [5.7, 3.8, 1.7, 0.3],
       [5.1, 3.8, 1.5, 0.3],
       [5.4, 3.4, 1.7, 0.2],
       [5.1, 3.7, 1.5, 0.4],
       [4.6, 3.6, 1. , 0.2],
       [5.1, 3.3, 1.7, 0.5],
       [4.8, 3.4, 1.9, 0.2],
       [5. , 3. , 1.6, 0.2],
       [5. , 3.4, 1.6, 0.4],
       [5.2, 3.5, 1.5, 0.2],
       [5.2, 3.4, 1.4, 0.2],
       [4.7, 3.2, 1.6, 0.2],
       [4.8, 3.1, 1.6, 0.2],
       [5.4, 3.4, 1.5, 0.4],
       [5.2, 4.1, 1.5, 0.1],
       [5.5, 4.2, 1.4, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [5. , 3.2, 1.2, 0.2],
       [5.5, 3.5, 1.3, 0.2],
       [4.9, 3.1, 1.5, 0.1],
       [4.4, 3. , 1.3, 0.2],
       [5.1, 3.4, 1.5, 0.2],
       [5. , 3.5, 1.3, 0.3],
       [4.5, 2.3, 1.3, 0.3],
       [4.4, 3.2, 1.3, 0.2],
       [5. , 3.5, 1.6, 0.6],
       [5.1, 3.8, 1.9, 0.4],
       [4.8, 3. , 1.4, 0.3],
       [5.1, 3.8, 1.6, 0.2],
       [4.6, 3.2, 1.4, 0.2],
       [5.3, 3.7, 1.5, 0.2],
       [5. , 3.3, 1.4, 0.2]])
In [79]:
versicolor1
Out[79]:
array([[7. , 3.2, 4.7, 1.4],
       [6.4, 3.2, 4.5, 1.5],
       [6.9, 3.1, 4.9, 1.5],
       [5.5, 2.3, 4. , 1.3],
       [6.5, 2.8, 4.6, 1.5],
       [5.7, 2.8, 4.5, 1.3],
       [6.3, 3.3, 4.7, 1.6],
       [4.9, 2.4, 3.3, 1. ],
       [6.6, 2.9, 4.6, 1.3],
       [5.2, 2.7, 3.9, 1.4],
       [5. , 2. , 3.5, 1. ],
       [5.9, 3. , 4.2, 1.5],
       [6. , 2.2, 4. , 1. ],
       [6.1, 2.9, 4.7, 1.4],
       [5.6, 2.9, 3.6, 1.3],
       [6.7, 3.1, 4.4, 1.4],
       [5.6, 3. , 4.5, 1.5],
       [5.8, 2.7, 4.1, 1. ],
       [6.2, 2.2, 4.5, 1.5],
       [5.6, 2.5, 3.9, 1.1],
       [5.9, 3.2, 4.8, 1.8],
       [6.1, 2.8, 4. , 1.3],
       [6.3, 2.5, 4.9, 1.5],
       [6.1, 2.8, 4.7, 1.2],
       [6.4, 2.9, 4.3, 1.3],
       [6.6, 3. , 4.4, 1.4],
       [6.8, 2.8, 4.8, 1.4],
       [6.7, 3. , 5. , 1.7],
       [6. , 2.9, 4.5, 1.5],
       [5.7, 2.6, 3.5, 1. ],
       [5.5, 2.4, 3.8, 1.1],
       [5.5, 2.4, 3.7, 1. ],
       [5.8, 2.7, 3.9, 1.2],
       [6. , 2.7, 5.1, 1.6],
       [5.4, 3. , 4.5, 1.5],
       [6. , 3.4, 4.5, 1.6],
       [6.7, 3.1, 4.7, 1.5],
       [6.3, 2.3, 4.4, 1.3],
       [5.6, 3. , 4.1, 1.3],
       [5.5, 2.5, 4. , 1.3],
       [5.5, 2.6, 4.4, 1.2],
       [6.1, 3. , 4.6, 1.4],
       [5.8, 2.6, 4. , 1.2],
       [5. , 2.3, 3.3, 1. ],
       [5.6, 2.7, 4.2, 1.3],
       [5.7, 3. , 4.2, 1.2],
       [5.7, 2.9, 4.2, 1.3],
       [6.2, 2.9, 4.3, 1.3],
       [5.1, 2.5, 3. , 1.1],
       [5.7, 2.8, 4.1, 1.3]])
In [81]:
virginica1
Out[81]:
array([[6.3, 3.3, 6. , 2.5],
       [5.8, 2.7, 5.1, 1.9],
       [7.1, 3. , 5.9, 2.1],
       [6.3, 2.9, 5.6, 1.8],
       [6.5, 3. , 5.8, 2.2],
       [7.6, 3. , 6.6, 2.1],
       [4.9, 2.5, 4.5, 1.7],
       [7.3, 2.9, 6.3, 1.8],
       [6.7, 2.5, 5.8, 1.8],
       [7.2, 3.6, 6.1, 2.5],
       [6.5, 3.2, 5.1, 2. ],
       [6.4, 2.7, 5.3, 1.9],
       [6.8, 3. , 5.5, 2.1],
       [5.7, 2.5, 5. , 2. ],
       [5.8, 2.8, 5.1, 2.4],
       [6.4, 3.2, 5.3, 2.3],
       [6.5, 3. , 5.5, 1.8],
       [7.7, 3.8, 6.7, 2.2],
       [7.7, 2.6, 6.9, 2.3],
       [6. , 2.2, 5. , 1.5],
       [6.9, 3.2, 5.7, 2.3],
       [5.6, 2.8, 4.9, 2. ],
       [7.7, 2.8, 6.7, 2. ],
       [6.3, 2.7, 4.9, 1.8],
       [6.7, 3.3, 5.7, 2.1],
       [7.2, 3.2, 6. , 1.8],
       [6.2, 2.8, 4.8, 1.8],
       [6.1, 3. , 4.9, 1.8],
       [6.4, 2.8, 5.6, 2.1],
       [7.2, 3. , 5.8, 1.6],
       [7.4, 2.8, 6.1, 1.9],
       [7.9, 3.8, 6.4, 2. ],
       [6.4, 2.8, 5.6, 2.2],
       [6.3, 2.8, 5.1, 1.5],
       [6.1, 2.6, 5.6, 1.4],
       [7.7, 3. , 6.1, 2.3],
       [6.3, 3.4, 5.6, 2.4],
       [6.4, 3.1, 5.5, 1.8],
       [6. , 3. , 4.8, 1.8],
       [6.9, 3.1, 5.4, 2.1],
       [6.7, 3.1, 5.6, 2.4],
       [6.9, 3.1, 5.1, 2.3],
       [5.8, 2.7, 5.1, 1.9],
       [6.8, 3.2, 5.9, 2.3],
       [6.7, 3.3, 5.7, 2.5],
       [6.7, 3. , 5.2, 2.3],
       [6.3, 2.5, 5. , 1.9],
       [6.5, 3. , 5.2, 2. ],
       [6.2, 3.4, 5.4, 2.3],
       [5.9, 3. , 5.1, 1.8]])