티스토리 뷰

Simple CNN을 이용하여 MNIST를 분류해보겠다.

 

 

 

 

 

MNIST and Convolutional Neural Network

In [1]:
import tensorflow as tf
import random
# Import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

tf.set_random_seed(777) # reproducibility
In [2]:
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset

# hyper parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
 
WARNING:tensorflow:From <ipython-input-2-43e44e1fd9a9>:1: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.
Instructions for updating:
Please write your own downloading logic.
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-images-idx3-ubyte.gz
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.data to implement this functionality.
Extracting MNIST_data/train-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use tf.one_hot on tensors.
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\contrib\learn\python\learn\datasets\mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.
Instructions for updating:
Please use alternatives such as official/mnist/dataset.py from tensorflow/models.
 

Conv layer 1

input layer ~ convolutional layer1 ~ pooling layer1

In [3]:
# input placeholders
X = tf.placeholder(tf.float32, [None, 784])
X_img = tf.reshape(X, [-1, 28, 28, 1]) # img 28x28x1 (색1개) (black/white)
Y = tf.placeholder(tf.float32, [None, 10])

# L1 ImgIn shape=(?, 28, 28, 1) 
W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01)) #  필터의 크기 3x3, 색은 1개, 32개의 필터
# Conv -> (?, 28, 28, 32)
# Pool -> (?, 14, 14, 32) # 2번째 convolution layer의 입력으로 사용
L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')
L1 = tf.nn.relu(L1)
L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],
                    strides=[1, 2, 2, 1], padding='SAME')
'''
Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32)
Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32)
Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32)
'''
 
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
Out[3]:
'\nTensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32)\nTensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32)\nTensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32)\n'
 

Conv layer 2

convolutional layer2 ~ pooling layer2

In [4]:
# L2 ImgIn shape=(?, 14, 14, 32)
W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))
# Conv ->(?, 14, 14, 64)
# Pool ->(?, 7, 7, 64)
L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
L2 = tf.nn.relu(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
L2_flat = tf.reshape(L2, [-1, 7 * 7 * 64]) # fully connected에 넣기 전에 쭉 펼친다.
'''
Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)
Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)
Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32)
Tensor("Reshape_1:0", shape=(?, 3136), dtype=float32)
'''
Out[4]:
'\nTensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)\nTensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)\nTensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32)\nTensor("Reshape_1:0", shape=(?, 3136), dtype=float32)\n'
 

Fully Connected (FC, Dense) layer

In [5]:
# Final FC 7x7x64 inputs -> 10 outputs
W3 = tf.get_variable("W2", shape=[7 * 7 * 64, 10],
                    initializer=tf.contrib.layers.xavier_initializer())
b = tf.Variable(tf.random_normal([10]))
logits = tf.matmul(L2_flat, W3) + b

# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
 
WARNING:tensorflow:From <ipython-input-5-d5cdbedaf478>:9: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:

Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.

See `tf.nn.softmax_cross_entropy_with_logits_v2`.

 

Training and Evaluation

In [6]:
# initialize
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# train my model
print('Learning started. It takes sometime.')
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(mnist.train.num_examples / batch_size)
    
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        feed_dict = {X: batch_xs, Y: batch_ys}
        c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
        avg_cost += c / total_batch
        
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
    
print('Learning Finished!')

# Test model and check accuracy
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy;', sess.run(accuracy, feed_dict={
    X: mnist.test.images, Y: mnist.test.labels}))
 
Learning started. It takes sometime.
Epoch: 0001 cost = 0.345610271
Epoch: 0002 cost = 0.091822399
Epoch: 0003 cost = 0.068226372
Epoch: 0004 cost = 0.056330050
Epoch: 0005 cost = 0.046904021
Epoch: 0006 cost = 0.041011793
Epoch: 0007 cost = 0.036489689
Epoch: 0008 cost = 0.032604112
Epoch: 0009 cost = 0.027693355
Epoch: 0010 cost = 0.024886812
Epoch: 0011 cost = 0.022040645
Epoch: 0012 cost = 0.020268836
Epoch: 0013 cost = 0.016614320
Epoch: 0014 cost = 0.015636408
Epoch: 0015 cost = 0.013240455
Learning Finished!
Accuracy; 0.9882
In [7]:
# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
    tf.argmax(logits, 1), feed_dict={X: mnist.test.images[r:r + 1]}))

# plt.imshow(mnist.test.images[r:r + 1].
#           reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()
 
Label:  [4]
Prediction:  [4]
 

Deep CNN

Input layer
-Convolution layer1 -Pooling layer1
-Convolution layer2 -Pooling layer2
-Convolution layer3 -Pooling layer3
-Locally connected layer
-Fully conected layer1 -Fully connected layer2
-Output layer

In [8]:
tf.set_random_seed(777)  # reproducibility

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset

# hyper parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100

# dropout (keep_prob) rate  0.7~0.5 on training, but should be 1 for testing
keep_prob = tf.placeholder(tf.float32)

# input place holders
X = tf.placeholder(tf.float32, [None, 784])
X_img = tf.reshape(X, [-1, 28, 28, 1])   # img 28x28x1 (black/white)
Y = tf.placeholder(tf.float32, [None, 10])

# L1 ImgIn shape=(?, 28, 28, 1)
W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01))
#    Conv     -> (?, 28, 28, 32)
#    Pool     -> (?, 14, 14, 32)
L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')
L1 = tf.nn.relu(L1)
L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],
                    strides=[1, 2, 2, 1], padding='SAME')
L1 = tf.nn.dropout(L1, keep_prob=keep_prob)
'''
Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32)
Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32)
Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32)
Tensor("dropout/mul:0", shape=(?, 14, 14, 32), dtype=float32)
'''

# L2 ImgIn shape=(?, 14, 14, 32)
W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))
#    Conv      ->(?, 14, 14, 64)
#    Pool      ->(?, 7, 7, 64)
L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
L2 = tf.nn.relu(L2)
L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1],
                    strides=[1, 2, 2, 1], padding='SAME')
L2 = tf.nn.dropout(L2, keep_prob=keep_prob)
'''
Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)
Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)
Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32)
Tensor("dropout_1/mul:0", shape=(?, 7, 7, 64), dtype=float32)
'''

# L3 ImgIn shape=(?, 7, 7, 64)
W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01))
#    Conv      ->(?, 7, 7, 128)
#    Pool      ->(?, 4, 4, 128)
#    Reshape   ->(?, 4 * 4 * 128) # Flatten them for FC
L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME')
L3 = tf.nn.relu(L3)
L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[
                    1, 2, 2, 1], padding='SAME')
L3 = tf.nn.dropout(L3, keep_prob=keep_prob)
L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])
'''
Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32)
Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32)
Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32)
'''

# L4 FC 4x4x128 inputs -> 625 outputs
W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
                     initializer=tf.contrib.layers.xavier_initializer())
b4 = tf.Variable(tf.random_normal([625]))
L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)
L4 = tf.nn.dropout(L4, keep_prob=keep_prob)
'''
Tensor("Relu_3:0", shape=(?, 625), dtype=float32)
Tensor("dropout_3/mul:0", shape=(?, 625), dtype=float32)
'''

# L5 Final FC 625 inputs -> 10 outputs
W5 = tf.get_variable("W5", shape=[625, 10],
                     initializer=tf.contrib.layers.xavier_initializer())
b5 = tf.Variable(tf.random_normal([10]))
logits = tf.matmul(L4, W5) + b5
'''
Tensor("add_1:0", shape=(?, 10), dtype=float32)
'''

# define cost/loss & optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
    logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# initialize
sess = tf.Session()
sess.run(tf.global_variables_initializer())

# train my model
print('Learning started. It takes sometime.')
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(mnist.train.num_examples / batch_size)

    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        feed_dict = {X: batch_xs, Y: batch_ys, keep_prob: 0.7}   # 학습할 땐 0.7로 test할 땐 1로
        c, _ = sess.run([cost, optimizer], feed_dict=feed_dict)
        avg_cost += c / total_batch

    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))

print('Learning Finished!')

# Test model and check accuracy

# if you have a OOM error, please refer to lab-11-X-mnist_deep_cnn_low_memory.py

correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print('Accuracy:', sess.run(accuracy, feed_dict={
      X: mnist.test.images, Y: mnist.test.labels, keep_prob: 1}))

# Get one and predict
r = random.randint(0, mnist.test.num_examples - 1)
print("Label: ", sess.run(tf.argmax(mnist.test.labels[r:r + 1], 1)))
print("Prediction: ", sess.run(
    tf.argmax(logits, 1), feed_dict={X: mnist.test.images[r:r + 1], keep_prob: 1}))

# plt.imshow(mnist.test.images[r:r + 1].
#           reshape(28, 28), cmap='Greys', interpolation='nearest')
# plt.show()
 
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
WARNING:tensorflow:From <ipython-input-8-eaa8d70a0eb7>:28: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
Learning started. It takes sometime.
Epoch: 0001 cost = 0.396194086
Epoch: 0002 cost = 0.101572236
Epoch: 0003 cost = 0.075281386
Epoch: 0004 cost = 0.062507546
Epoch: 0005 cost = 0.052145810
Epoch: 0006 cost = 0.047447198
Epoch: 0007 cost = 0.044072432
Epoch: 0008 cost = 0.040297245
Epoch: 0009 cost = 0.036369126
Epoch: 0010 cost = 0.034940179
Epoch: 0011 cost = 0.033733001
Epoch: 0012 cost = 0.032235986
Epoch: 0013 cost = 0.030559173
Epoch: 0014 cost = 0.026081747
Epoch: 0015 cost = 0.026446948
Learning Finished!
Accuracy: 0.9929
Label:  [7]
Prediction:  [7]
 

Dropout과 layer를 추가했더니 99%가 넘는 정확도가 나왔다.

'beginner > 파이썬 딥러닝 기초' 카테고리의 다른 글

NN의 꽃 RNN 이야기  (0) 2019.05.13
Class, tf.layers, Ensemble (MNIST 99.5%)  (0) 2019.05.13
TensorFlow CNN의 기본  (0) 2019.05.12
ConvNet의 활용  (0) 2019.05.12
ConvNet Max Pooling  (0) 2019.05.12
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함