티스토리 뷰

 

 

 

 

지난번에 Deep CNN을 이용하여 99.3%의 정확도가 나왔다.
그런데 소스코드가 너무 복잡하고 관리하기가 힘들기 때문에 파이썬의 class를 이용하면 효과적으로 관리할 수 있다.

In [2]:
import tensorflow as tf
import numpy as np
# import matplotlib.pyplot as plt

from tensorflow.examples.tutorials.mnist import input_data

tf.set_random_seed(777)  # reproducibility

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# Check out https://www.tensorflow.org/get_started/mnist/beginners for
# more information about the mnist dataset

# hyper parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
 
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
 

Python Class

In [2]:
class Model:

    # initialize에서 session을 넘겨주면 좋다.
    def __init__(self, sess, name):
        self.sess = sess
        self.name = name
        self._build_net()

    # 네트워크를 build 한다.
    def _build_net(self):
        with tf.variable_scope(self.name):
            # dropout (keep_prob) rate  0.7~0.5 on training, but should be 1
            # for testing
            self.keep_prob = tf.placeholder(tf.float32)

            # input place holders
            self.X = tf.placeholder(tf.float32, [None, 784])
            # img 28x28x1 (black/white)
            X_img = tf.reshape(self.X, [-1, 28, 28, 1])
            self.Y = tf.placeholder(tf.float32, [None, 10])

            # L1 ImgIn shape=(?, 28, 28, 1)
            W1 = tf.Variable(tf.random_normal([3, 3, 1, 32], stddev=0.01))
            #    Conv     -> (?, 28, 28, 32)
            #    Pool     -> (?, 14, 14, 32)
            L1 = tf.nn.conv2d(X_img, W1, strides=[1, 1, 1, 1], padding='SAME')
            L1 = tf.nn.relu(L1)
            L1 = tf.nn.max_pool(L1, ksize=[1, 2, 2, 1],
                                strides=[1, 2, 2, 1], padding='SAME')
            L1 = tf.nn.dropout(L1, keep_prob=self.keep_prob)
            '''
            Tensor("Conv2D:0", shape=(?, 28, 28, 32), dtype=float32)
            Tensor("Relu:0", shape=(?, 28, 28, 32), dtype=float32)
            Tensor("MaxPool:0", shape=(?, 14, 14, 32), dtype=float32)
            Tensor("dropout/mul:0", shape=(?, 14, 14, 32), dtype=float32)
            '''

            # L2 ImgIn shape=(?, 14, 14, 32)
            W2 = tf.Variable(tf.random_normal([3, 3, 32, 64], stddev=0.01))
            #    Conv      ->(?, 14, 14, 64)
            #    Pool      ->(?, 7, 7, 64)
            L2 = tf.nn.conv2d(L1, W2, strides=[1, 1, 1, 1], padding='SAME')
            L2 = tf.nn.relu(L2)
            L2 = tf.nn.max_pool(L2, ksize=[1, 2, 2, 1],
                                strides=[1, 2, 2, 1], padding='SAME')
            L2 = tf.nn.dropout(L2, keep_prob=self.keep_prob)
            '''
            Tensor("Conv2D_1:0", shape=(?, 14, 14, 64), dtype=float32)
            Tensor("Relu_1:0", shape=(?, 14, 14, 64), dtype=float32)
            Tensor("MaxPool_1:0", shape=(?, 7, 7, 64), dtype=float32)
            Tensor("dropout_1/mul:0", shape=(?, 7, 7, 64), dtype=float32)
            '''

            # L3 ImgIn shape=(?, 7, 7, 64)
            W3 = tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.01))
            #    Conv      ->(?, 7, 7, 128)
            #    Pool      ->(?, 4, 4, 128)
            #    Reshape   ->(?, 4 * 4 * 128) # Flatten them for FC
            L3 = tf.nn.conv2d(L2, W3, strides=[1, 1, 1, 1], padding='SAME')
            L3 = tf.nn.relu(L3)
            L3 = tf.nn.max_pool(L3, ksize=[1, 2, 2, 1], strides=[
                                1, 2, 2, 1], padding='SAME')
            L3 = tf.nn.dropout(L3, keep_prob=self.keep_prob)

            L3_flat = tf.reshape(L3, [-1, 128 * 4 * 4])
            '''
            Tensor("Conv2D_2:0", shape=(?, 7, 7, 128), dtype=float32)
            Tensor("Relu_2:0", shape=(?, 7, 7, 128), dtype=float32)
            Tensor("MaxPool_2:0", shape=(?, 4, 4, 128), dtype=float32)
            Tensor("dropout_2/mul:0", shape=(?, 4, 4, 128), dtype=float32)
            Tensor("Reshape_1:0", shape=(?, 2048), dtype=float32)
            '''

            # L4 FC 4x4x128 inputs -> 625 outputs
            W4 = tf.get_variable("W4", shape=[128 * 4 * 4, 625],
                                 initializer=tf.contrib.layers.xavier_initializer())
            b4 = tf.Variable(tf.random_normal([625]))
            L4 = tf.nn.relu(tf.matmul(L3_flat, W4) + b4)
            L4 = tf.nn.dropout(L4, keep_prob=self.keep_prob)
            '''
            Tensor("Relu_3:0", shape=(?, 625), dtype=float32)
            Tensor("dropout_3/mul:0", shape=(?, 625), dtype=float32)
            '''

            # L5 Final FC 625 inputs -> 10 outputs
            W5 = tf.get_variable("W5", shape=[625, 10],
                                 initializer=tf.contrib.layers.xavier_initializer())
            b5 = tf.Variable(tf.random_normal([10]))
            self.logits = tf.matmul(L4, W5) + b5
            '''
            Tensor("add_1:0", shape=(?, 10), dtype=float32)
            '''

        # define cost/loss & optimizer
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            logits=self.logits, labels=self.Y))
        self.optimizer = tf.train.AdamOptimizer(
            learning_rate=learning_rate).minimize(self.cost)

        correct_prediction = tf.equal(
            tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

        # 예측하는 것, 정확도 구하는 것, 학습하는 것에 대한 함수를 만든다.
    def predict(self, x_test, keep_prop=1.0):
        return self.sess.run(self.logits, feed_dict={self.X: x_test, self.keep_prob: keep_prop})

    def get_accuracy(self, x_test, y_test, keep_prop=1.0):
        return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.keep_prob: keep_prop})

    def train(self, x_data, y_data, keep_prop=0.7):
        return self.sess.run([self.cost, self.optimizer], feed_dict={
            self.X: x_data, self.Y: y_data, self.keep_prob: keep_prop})
 

이렇게 클래스로 만들게 되면 편리한 것은 다음과 같이 session을 열고 클래스를 만들수 있다.

In [3]:
#initialize
sess = tf.Session()
m1 = Model(sess, "m1")

sess.run(tf.global_variables_initializer())

print('Learning Started')

# train my model
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(mnist.train.num_examples / batch_size)

    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size) # xs와 ys를 받아왔다.
        c, _ = m1.train(batch_xs, batch_ys) # 여기서 session run 할 필요 없이 m1의 도움함수 train을 바로 호출 해버린다.
        avg_cost += c / total_batch
        
    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))
    
print('Learning Finished!')

# Test model and check accuracy
print('Accuracy:', m1.get_accuracy(mnist.test.images, mnist.test.labels))
 
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From <ipython-input-2-83cdcddb4da9>:30: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From <ipython-input-2-83cdcddb4da9>:96: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:

Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.

See `tf.nn.softmax_cross_entropy_with_logits_v2`.

Learning Started
Epoch: 0001 cost = 0.373987408
Epoch: 0002 cost = 0.102575131
Epoch: 0003 cost = 0.074238078
Epoch: 0004 cost = 0.060850473
Epoch: 0005 cost = 0.050949179
Epoch: 0006 cost = 0.046736376
Epoch: 0007 cost = 0.042369381
Epoch: 0008 cost = 0.039416226
Epoch: 0009 cost = 0.036479590
Epoch: 0010 cost = 0.034052396
Epoch: 0011 cost = 0.031827311
Epoch: 0012 cost = 0.029916964
Epoch: 0013 cost = 0.029861744
Epoch: 0014 cost = 0.027045597
Epoch: 0015 cost = 0.026910626
Learning Finished!
Accuracy: 0.9924
 

tf.layers

 

이 패키지는 계속 추가되고 있는 중 인데, 우리가 많이 사용하는 conv2d라던지 pooling이라던지 dense같은 것들을 만들어 두 high leve api. 숫자같은 것이 나와 복잡했던 작업들을 단순하게 처리할 수 있다.

In [4]:
from PIL import Image
Image.open('tflayer.png')
Out[4]:
In [5]:
Image.open('tflayer2.png')
Out[5]:
In [6]:
class Model:

    def __init__(self, sess, name):
        self.sess = sess
        self.name = name
        self._build_net()

    def _build_net(self):
        with tf.variable_scope(self.name):
            # dropout (keep_prob) rate  0.7~0.5 on training, but should be 1
            # for testing
            self.training = tf.placeholder(tf.bool)

            # input place holders
            self.X = tf.placeholder(tf.float32, [None, 784])

            # img 28x28x1 (black/white), Input Layer
            X_img = tf.reshape(self.X, [-1, 28, 28, 1])
            self.Y = tf.placeholder(tf.float32, [None, 10])

            # Convolutional Layer #1
            conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3],
                                     padding="SAME", activation=tf.nn.relu)
            # Pooling Layer #1
            pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
                                            padding="SAME", strides=2)
            dropout1 = tf.layers.dropout(inputs=pool1,
                                         rate=0.3, training=self.training)

            # Convolutional Layer #2 and Pooling Layer #2
            conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3],
                                     padding="SAME", activation=tf.nn.relu)
            pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
                                            padding="SAME", strides=2)
            dropout2 = tf.layers.dropout(inputs=pool2,
                                         rate=0.3, training=self.training)

            # Convolutional Layer #2 and Pooling Layer #2
            conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3],
                                     padding="same", activation=tf.nn.relu)
            pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2],
                                            padding="same", strides=2)
            dropout3 = tf.layers.dropout(inputs=pool3,
                                         rate=0.3, training=self.training)

            # Dense Layer with Relu
            flat = tf.reshape(dropout3, [-1, 128 * 4 * 4])
            dense4 = tf.layers.dense(inputs=flat,
                                     units=625, activation=tf.nn.relu)
            dropout4 = tf.layers.dropout(inputs=dense4,
                                         rate=0.5, training=self.training)

            # Logits (no activation) Layer: L5 Final FC 625 inputs -> 10 outputs
            self.logits = tf.layers.dense(inputs=dropout4, units=10)

        # define cost/loss & optimizer
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            logits=self.logits, labels=self.Y))
        self.optimizer = tf.train.AdamOptimizer(
            learning_rate=learning_rate).minimize(self.cost)

        correct_prediction = tf.equal(
            tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    def predict(self, x_test, training=False):
        return self.sess.run(self.logits,
                             feed_dict={self.X: x_test, self.training: training})

    def get_accuracy(self, x_test, y_test, training=False):
        return self.sess.run(self.accuracy,
                             feed_dict={self.X: x_test,
                                        self.Y: y_test, self.training: training})

    def train(self, x_data, y_data, training=True):
        return self.sess.run([self.cost, self.optimizer], feed_dict={
            self.X: x_data, self.Y: y_data, self.training: training})

# initialize
sess = tf.Session()
m1 = Model(sess, "m1")

sess.run(tf.global_variables_initializer())

print('Learning Started!')

# train my model
for epoch in range(training_epochs):
    avg_cost = 0
    total_batch = int(mnist.train.num_examples / batch_size)

    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
        c, _ = m1.train(batch_xs, batch_ys)
        avg_cost += c / total_batch

    print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.9f}'.format(avg_cost))

print('Learning Finished!')

# Test model and check accuracy
print('Accuracy:', m1.get_accuracy(mnist.test.images, mnist.test.labels))
 
WARNING:tensorflow:From <ipython-input-6-fd5534dcbbf0>:23: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.conv2d instead.
WARNING:tensorflow:From <ipython-input-6-fd5534dcbbf0>:26: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.max_pooling2d instead.
WARNING:tensorflow:From <ipython-input-6-fd5534dcbbf0>:28: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dropout instead.
WARNING:tensorflow:From <ipython-input-6-fd5534dcbbf0>:49: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dense instead.
Learning Started!
Epoch: 0001 cost = 0.281363855
Epoch: 0002 cost = 0.085348610
Epoch: 0003 cost = 0.067395728
Epoch: 0004 cost = 0.055538505
Epoch: 0005 cost = 0.047960551
Epoch: 0006 cost = 0.045487972
Epoch: 0007 cost = 0.040675544
Epoch: 0008 cost = 0.037944503
Epoch: 0009 cost = 0.034905455
Epoch: 0010 cost = 0.032421212
Epoch: 0011 cost = 0.031579137
Epoch: 0012 cost = 0.030650309
Epoch: 0013 cost = 0.028514100
Epoch: 0014 cost = 0.027558100
Epoch: 0015 cost = 0.026918320
Learning Finished!
Accuracy: 0.9948
 

Ensemble

 

앙살블은 여러개를 조합하여 조화롭게 만들어낸다는 의미를 갖고 있다.
Clssification 모델에 대해 앙상블을 적용한다는 것은, 여러개의 독립된 모델을 training 시키고 우리에게 testing 할 새로운 데이터가 들어왔다고 하면 각각의 모델이 예측을 하여 예측한 결과를 조합한다. 이 최종적인 결론이 굉장히 좋은 결과를 가져온다.

In [7]:
Image.open('ensemble.png')
Out[7]:
 

각각의 모델별로 예측을 시킨다음 회별로 합친다. 이 중에서 가장 점수가 높은것으로 예측하겠다 하는 것이다.

In [8]:
Image.open('ensemble2.png')
Out[8]:
 

우리가 하고 있는 test에 이 앙상블이 어떻게 적용되는지 확인해 보자.

In [3]:
# 우선 독립된 모델을 여러개 만들어야 한다. 그러기 위해서 class를 활용하면 모델을 쉽게 만들 수 있다.
class Model:

    def __init__(self, sess, name):
        self.sess = sess
        self.name = name
        self._build_net()

    def _build_net(self):
        with tf.variable_scope(self.name):
            # dropout (keep_prob) rate  0.7~0.5 on training, but should be 1
            # for testing
            self.training = tf.placeholder(tf.bool)

            # input place holders
            self.X = tf.placeholder(tf.float32, [None, 784])

            # img 28x28x1 (black/white), Input Layer
            X_img = tf.reshape(self.X, [-1, 28, 28, 1])
            self.Y = tf.placeholder(tf.float32, [None, 10])

            # Convolutional Layer #1
            conv1 = tf.layers.conv2d(inputs=X_img, filters=32, kernel_size=[3, 3],
                                     padding="SAME", activation=tf.nn.relu)
            # Pooling Layer #1
            pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],
                                            padding="SAME", strides=2)
            dropout1 = tf.layers.dropout(inputs=pool1,
                                         rate=0.3, training=self.training)

            # Convolutional Layer #2 and Pooling Layer #2
            conv2 = tf.layers.conv2d(inputs=dropout1, filters=64, kernel_size=[3, 3],
                                     padding="SAME", activation=tf.nn.relu)
            pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],
                                            padding="SAME", strides=2)
            dropout2 = tf.layers.dropout(inputs=pool2,
                                         rate=0.3, training=self.training)

            # Convolutional Layer #3 and Pooling Layer #3
            conv3 = tf.layers.conv2d(inputs=dropout2, filters=128, kernel_size=[3, 3],
                                     padding="SAME", activation=tf.nn.relu)
            pool3 = tf.layers.max_pooling2d(inputs=conv3, pool_size=[2, 2],
                                            padding="SAME", strides=2)
            dropout3 = tf.layers.dropout(inputs=pool3,
                                         rate=0.3, training=self.training)

            # Dense Layer with Relu
            flat = tf.reshape(dropout3, [-1, 128 * 4 * 4])
            dense4 = tf.layers.dense(inputs=flat,
                                     units=625, activation=tf.nn.relu)
            dropout4 = tf.layers.dropout(inputs=dense4,
                                         rate=0.5, training=self.training)

            # Logits (no activation) Layer: L5 Final FC 625 inputs -> 10 outputs
            self.logits = tf.layers.dense(inputs=dropout4, units=10)

        # define cost/loss & optimizer
        self.cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
            logits=self.logits, labels=self.Y))
        self.optimizer = tf.train.AdamOptimizer(
            learning_rate=learning_rate).minimize(self.cost)

        correct_prediction = tf.equal(
            tf.argmax(self.logits, 1), tf.argmax(self.Y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

    def predict(self, x_test, training=False):
        return self.sess.run(self.logits,
                             feed_dict={self.X: x_test, self.training: training})

    def get_accuracy(self, x_test, y_test, training=False):
        return self.sess.run(self.accuracy,
                             feed_dict={self.X: x_test,
                                        self.Y: y_test, self.training: training})

    def train(self, x_data, y_data, training=True):
        return self.sess.run([self.cost, self.optimizer], feed_dict={
            self.X: x_data, self.Y: y_data, self.training: training})

    
# initialize
sess = tf.Session()

#모델을 담아낼 리스트를 만들고 몇 개의 모델을 할지 정한다.(여기는 2개)
#그 다음 for루프를 돌며 7개의 모델을 만들어 낸다. 클래스를 소개하면 클래스 인스턴스가 생겨나고 리스트에 추가되는 구조이다.
models = []
num_models = 2
for m in range(num_models):
    models.append(Model(sess, "model" + str(m)))

sess.run(tf.global_variables_initializer())

print('Learning Started!')


# train my model
# 에폭마다 필요한 배치 사이즈(xs, ys)를 불러와서 학습을 시킨다.
for epoch in range(training_epochs):
    avg_cost_list = np.zeros(len(models))
    total_batch = int(mnist.train.num_examples / batch_size)
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size)

        # train each model. 기존에는 모델 하나만 학습시켰던 반면 앙상블 에서는 각각의 모델에 대해 학습을 시킨다.
        for m_idx, m in enumerate(models):
            c, _ = m.train(batch_xs, batch_ys)
            avg_cost_list[m_idx] += c / total_batch # 각각의 모델별로 cost를 구해준다.

    print('Epoch:', '%04d' % (epoch + 1), 'cost =', avg_cost_list)

print('Learning Finished!')

# Test model and check accuracy
test_size = len(mnist.test.labels)
predictions = np.zeros([test_size, 10])
for m_idx, m in enumerate(models):
    print(m_idx, 'Accuracy:', m.get_accuracy(
        mnist.test.images, mnist.test.labels))
    p = m.predict(mnist.test.images) # 각각의 모델에 대해서 예측
    predictions += p # 예측 한 것들의 합을 구한다.

ensemble_correct_prediction = tf.equal(
    tf.argmax(predictions, 1), tf.argmax(mnist.test.labels, 1))
ensemble_accuracy = tf.reduce_mean(
    tf.cast(ensemble_correct_prediction, tf.float32))
print('Ensemble accuracy:', sess.run(ensemble_accuracy))
 
WARNING:tensorflow:From <ipython-input-3-e2efc789dc39>:25: conv2d (from tensorflow.python.layers.convolutional) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.conv2d instead.
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From <ipython-input-3-e2efc789dc39>:28: max_pooling2d (from tensorflow.python.layers.pooling) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.max_pooling2d instead.
WARNING:tensorflow:From <ipython-input-3-e2efc789dc39>:30: dropout (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dropout instead.
WARNING:tensorflow:From C:\Users\whanh\AppData\Local\Continuum\anaconda3\lib\site-packages\tensorflow\python\keras\layers\core.py:143: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
WARNING:tensorflow:From <ipython-input-3-e2efc789dc39>:51: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.dense instead.
WARNING:tensorflow:From <ipython-input-3-e2efc789dc39>:60: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.
Instructions for updating:

Future major versions of TensorFlow will allow gradients to flow
into the labels input on backprop by default.

See `tf.nn.softmax_cross_entropy_with_logits_v2`.

Learning Started!
Epoch: 0001 cost = [0.29210514 0.28803866]
Epoch: 0002 cost = [0.09162905 0.08774093]
Epoch: 0003 cost = [0.06831862 0.06865636]
Epoch: 0004 cost = [0.05603596 0.05694311]
Epoch: 0005 cost = [0.05139053 0.04909089]
Epoch: 0006 cost = [0.04624377 0.04492604]
Epoch: 0007 cost = [0.0397224  0.04062728]
Epoch: 0008 cost = [0.0382809  0.03772217]
Epoch: 0009 cost = [0.03695234 0.03592687]
Epoch: 0010 cost = [0.03226789 0.03424679]
Epoch: 0011 cost = [0.03100656 0.03151333]
Epoch: 0012 cost = [0.03163588 0.02934958]
Epoch: 0013 cost = [0.02876371 0.02867187]
Epoch: 0014 cost = [0.02821051 0.02746699]
Epoch: 0015 cost = [0.02850511 0.02792548]
Learning Finished!
0 Accuracy: 0.9928
1 Accuracy: 0.9944
Ensemble accuracy: 0.9944

'beginner > 파이썬 딥러닝 기초' 카테고리의 다른 글

RNN in TensorFlow  (0) 2019.05.14
NN의 꽃 RNN 이야기  (0) 2019.05.13
TensorFlow로 MNIST 99% 구현하기  (0) 2019.05.13
TensorFlow CNN의 기본  (0) 2019.05.12
ConvNet의 활용  (0) 2019.05.12
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/01   »
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
글 보관함